翻訳と辞書
Words near each other
・ Weyl algebra
・ Weyl character formula
・ Weyl curvature hypothesis
・ Weyl distance function
・ Weyl equation
・ Weyl group
・ Weyl integral
・ Weyl law
・ Weyl metrics
・ Weyl module
・ Weyl scalar
・ Weyl semimetal
・ Weyl tensor
・ Weyl transformation
・ Weyl's inequality
Weyl's lemma (Laplace equation)
・ Weyl's postulate
・ Weyl's theorem
・ Weyl's theorem on complete reducibility
・ Weyl's tile argument
・ Weylan Harding
・ Weyland
・ Weyland ringtail possum
・ Weylin Hotel
・ Weyl–Brauer matrices
・ Weyl–Schouten theorem
・ Weyl–von Neumann theorem
・ Weyl−Lewis−Papapetrou coordinates
・ Weyman
・ Weyman Airpark


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weyl's lemma (Laplace equation) : ウィキペディア英語版
Weyl's lemma (Laplace equation)
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.
==Statement of the lemma==
Let \Omega be an open subset of n-dimensional Euclidean space \mathbb^, and let \Delta denote the usual Laplace operator. Weyl's lemma〔Hermann Weyl, The method of orthogonal projections in potential theory, ''Duke Math. J.'', 7, 411-444 (1940). See Lemma 2, p. 415〕 states that if a locally integrable function u \in L_(\Omega) is a weak solution of Laplace's equation, in the sense that
:\int_ u(x) \Delta \phi (x) \, dx = 0
for every smooth test function \phi \in C_c^\infty(\Omega) with compact support, then (up to redefinition on a set of measure zero) u \in C^(\Omega) is smooth and satisfies \Delta u = 0 pointwise in \Omega.
This result implies the interior regularity of harmonic functions in \Omega, but it does not say anything about their regularity on the boundary \partial\Omega.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weyl's lemma (Laplace equation)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.